
Model Driven Production of Domain-Specific

Modeling Tools

Bassem KOSAYBA, Raphal MARVIE, Jean-Marc GEIB

Laboratoire d’Informatique Fondamentale de Lille
UMR CNRS 8022

59655 Villeneuve d’Ascq
{kosayba,marvie,geib}@lifl.fr

26 July 2004

Abstract

The models built using visual forms which are representations of the do-
main concepts are easier to be understood and expressed by the people who
work in this domain. Many projects produce modeling environments that
offer only the domain concepts to the user but with a single graphic view
that the user has to be satisfied with. In this paper, we present our process
that produce domain-specific modeling tools. This process is independent
of the graphic view. So, it can associate for the same domain-specific sev-
eral graphic views. Also, the way followed by this process makes it very
simple to re-use the description of the tool graphic view like that of the
domain-specific.

1 Introduction

Most current graphic environments which help designers to express their models
are rather general and are aimed at a large number of domains. Thus, they
are never really adapted to any particular domain. These environments do
not take the specifities of the domains into account. Without adaptation, these
environments have an impact on the design of the solution suggested by the user
because (s)he must express the concepts of his/her particular domain using the
concepts proposed by the general modeling tool. So, it is important to provide
the designer a modeling tool specialized to his/her domain. In other words, the
environment must be adapted to the user’s domain instead of the user having
to adapt himself to the environment.

There are many approaches to adapt a modeling environment to the user
domain. The majority of these approaches use a generator based approach in
order to produce the modeling tool. Unfortunately such generators behavior is

1



hard coded. Then, in order to change an aspect of the produced tool, such as
the graphic representation, the generator has to be modified and in the best
cases a graphic representation already taken into account by the generator can
be selected.

We are mainly interested by the meta-modeling approaches that recognize
and represent visually the domains concepts. The DOME [4] (Domain Modeling
Environment) project produces a domain-specific visual environment by a visual
re-configuration of the DOME meta-model concepts (Node, Connector). The
GME [3] (Generic Modeling Environment) project produces a domain-specific
visual environment by two steps. First, one defines the domain-specific model
using the GME meta-model concepts and after, one associates visually a graphic
form to each concept of the specific-domain model already defined. The two
projects provide good graphical modeling environments but these environments
have an unique graphic interface. So, the tool user must be satisfied by this
graphic interface. In our work, we insist on the separation between the tool
graphic representation and the domain-specific knowledge in order to capitalize
these two definitions for re-use. In other words, we want to change only the
definition of the graphic representation in order to change the graphic interface
and without re-defining the domain-specific knowledge. Thus, the modeling tool
that we want to produce have two aspects. The first describe the tool graphic
view and the second describe the tool functions depending directly on the user
specific-domain. The separation between these two aspects allow us to design
each aspect alone. In addition, we have to describe in another place how we
will integrate the two aspects in order to obtain the final product that is the
modeling tool in our case.

In order to implement this approach, we have decided to use the models to
describe the tool aspects and the models transformation in order to integrate
them togather. This solution makes it possible to re-use the model defining a
tool aspect in order to give this same aspect to another tool produced by our
process.

In this paper, we present a proposal in order to systematically generate a
graphic tool adapted to the user’s need, starting from a model expressing the
concepts of a specific-domain and a model describing the graphic view. Section
2, presents our proposal inspired from the MDA process. Section 3, shows the
models used to realize our proposal and it presents an example to illustrate our
approach. Finally, section 4 presents some conclusions and future works.

2 Proposal

We think that the success of visual domain-specific modeling environments de-
pends on their capacity to capture the domain-specific notations and to handle
them. So, our framework allows, starting from domain and view description
models, to obtain a suitable graphic interface which assists the design in a par-
ticular domain. Figure 1 explains our proposition.

This approach makes it possible to produce easily various graphic represen-

2



Figure 1: Overview

tations for the same application domain. This variety helps team members to
discus the same problem while each one works with his/her favorite graphic
representation. The definition of the domain-specific and of the graphic repre-
sentations are reusable. Defining a modeling tool for a specific-domain becomes
choosing a definition of this domain-specific and a definition of a graphic repre-
sentation. Thus, the production of a tool adapted to the user becomes simpler.
It becomes even possible to give various representations for users of the same
domain-specific.

In order to provide several graphic views to the graphic modeling tool and
without developing several generators (one for each different graphic view), we
have developed a framework independently of the graphic view description and
based on models transformation. What makes it possible to re-use the domain-
specific knowledge description with other graphic view descriptions or the re-
verse.

The idea of our process is to delay the insertion of the graphic representations
in the different parts of the graphic interface when the domain concepts are
recognized. A meta-model allows one to express the domain-specific concepts
independently of the graphic view (GUI IM). Next, a meta-model describes the
parts of the expected graphical representation. This latter allows one to express
his/her own graphical representation for the modeling tool (GUI M). Next, a
translator transforms the GUI IM (GUI Independent Model) to a GUI SM (GUI
Specific Model) that contains the same information of the GUI IM and their
relationships with the graphical representation. Finally, a generator maps the

3



GUI SM into the software components corresponding to the choosed graphical
representation.

In fact, this process weaves the domain-specific and the graphical represen-
tation models without knowing the model definitions but only how they are
defined. After that, it generates the code of the modeling tool according to the
model that is the result of this weaving.

3 Implementation

In order to automate as possible the capture of specific-domain notations by
visual forms, we propose that the representation of a domain concept is fixed
according to the meta-modeling concept used to define this domain concept.
For example, each domain’s concept defined using the meta-modeling concept
class is drawn as a rectangle containing the name of this domain concept.

3.1 Production driven by models

Our approach is organized into three levels, The meta-model level, the models
transformation level and that of the component library. Figure 2 explains our
plan and its entities are detailed.

3.1.1 Our process meta-models

This level defines the rules followed by the tool designer and by the models
weaving. There are three meta-models :

The lightMOF is a version reduced of the MOF. It allows one to describe
the domain concepts (The domain model) as (component, port, container .etc.)
for example, necessary to describe applications models based on components.

The GUI meta-model defines the graphic interface elements and their re-
lations. It allows one to describe his/her own graphical representation of the
interface elements.

The merged meta-model defines the relations between each lightMOF con-
cept and the GUI meta-model concepts. It makes it possible to know how this
lightMOF concept will be represented in the different parts of the tool graphic
interface. The models weaving process follow these relations in order to produce
the graphic specific tool model (GUI SM).

3.1.2 The process models transformation

In this level, the models information are inserted in other models in order to
enrich the new models or in order to be reorganized. There are three transfor-
mations :

Models weaving In this step, we build the tool specific graphic model by
weaving the elemnts of the domain model and that of the GUI model according
to the the relations between the concepts of the lightMOF and that of the GUI
meta-models defined in the merged meta-model.

4



Figure 2: Production process based on the models transformation

5



Models mapping In this step, we build a template model by extracting its
variables from the tool specific graphic model. We use this model to configure
the library built-in components. We add this step in order to making this model
independent of the technology used to implement the library components. Thus,
the template model is an intermediate stage whose the goal is to support several
technologies for the library components.

Code generation In this step, we generate the tool configuration file by the
configuration of the suitable templates using the template model variables. The
role of the file generated is to configure the library components in order to define
the model repository and the graphical interface of the modeling tool.

3.1.3 Software component library

This library contains the components that represent the lightMOF concepts and
that are used to build a model repository for a domain specific. Moreover, it
contains the graphic components that may be choosed in the GUI model.

The architecture of the produced tool will be composed of two parts : the
model repository and the graphic interface. This latter must display the def-
inition of the application model and provide the actions allowing the user to
handle the application model. In its turn, the model repository use the GUI
acts upon the model definition in the repository. This tool architecture guar-
antees a separation between the model view and the model data. So, we can
visualize the same model data using several graphic interfaces generated for its
domain-specific and thus we can obtain several model views that discuss the
same application model.

3.2 Exemple

In this section, we give examples of our main models in order to illustrate our
proposal.

3.2.1 Specific-domain model

Figure 3: The domain model

We take a simple domain that is composed from two class A and B and an

6



association R between the two concepts A, B. Figure 3 explains our specific-
domain model example.

3.2.2 GUI meta-model

This meta-model states that the graphical interface will be composed of two
parts. One to reference the domain concepts and the another to handle the
instances of the domain concepts at the application model level. Figure 4 shows
this meta-model.

Figure 4: Structure of the graphical interface

3.2.3 Merged meta-model

In this meta-model, we say that the domain-specific concepts defined by light-
MOF class and association concepts will be organized by the ConceptIndex and
will be handled by the ConceptView as it is shown in the Figure 5.

Figure 5: The mapping of the domain concepts into the the graphic interface
elements

7



3.2.4 GUI model

In this model, we define the type of the component used to list domain concepts
and that support the user actions in order to add these concept instances in the
application model. Therefore, we choose for example, the conceptIndex type
either Tree or Buttons List. Moreover, we define the type of the component
used to display the concept instance in the application model and to provide
the user actions allowing to handle their attributes. So, we choose for example,
the conceptView type either Drowing Board or Form Board.

3.2.5 A domain-specific tools

Figure 6: Two graphic views for the same domain

The figure 6 shows two modeling tools produced by our process for the same
domain shown in the figure 3 and using two graphic models. The first uses a
Buttons List to list the domain concepts and a Drawing Board to handle the
application model elements. While the second use a Tree to list the domain
concepts and a Form Board to handle the application model elements.

4 Conclusion

This paper presents our work which objective is to provide a framework that may
be useful for the MDA process. The purpose of this framework is to produce
graphical tools allowing the user to express his/her applications models in a
domain-specific and independently of execution technologies. At the same time,
we tried to benefit from the MDA ideas especially the models re-use, models
transformation and the separation of concerns.

The approach followed to implement our proposition may be interesting
because it presents a manner to divide a tool into several aspects and allows the
re-use of the definitions of these aspects in other tools.

8



References

[1] R. Esser, W. Janneck A FrameWork for Defining Domain-Specific Visual
Language. In The OOPSLA Workshop on Domain Specific Visual Lan-
guages, 2001.

[2] B. KOSAYBA R. Marvie J-M. GEIB Production of Domain Oriented
Graphic Modeling Environments, In The MDAFA03 Workshop on Model
Driven Architecture Foundations and Applications, 2003.

[3] A. Ledeczi M. Maroti and al The Generic Modeling Environment,
http://www.isis.vanderbilt.edu/Projects/gme/ .

[4] Honeywell, Inc. Dome Guide. Version 5.2.2, 2000.

[5] S.A. White C. Lemus-Olalde ARCHITECTURAL REUSE IN SOFTWARE
DEVELOPEMENT, .

[6] G. Karsai A. Agarwal and A. Ledeczi A Metamodel-Driven MDA Process and
Tools, In the UML Workshop W2 Workshop in Software Model Engineering,
2003.

[7] C. Schmidt P. Pfahler U. Kastens C. Fischer SIMtelligence Designer/J: A
Visual language to Specify SIM Toolkit Applications, .

[8] MetaCase WHITE PAPER DOMAIN-SPECIFIC MODELING: 10 TIMES
FASTER THAN UML.

[9] Model Driven Architecture (MDA) Guide version 1.0.1, OMG Document,
2003, http://www.omg.org/mda/.

[10] MOF (M eta Object Facility Specification), OMG, Object M anagement
Group.

[11] QVT (MOF 2.0 Query, Views and Transformations – Request for Proposal)
OMG, Object Management Group

9


